E. FRANK CORNELIUS, PhD, JD

Arbitrator & Consultant

www.arbitrator.org
Your Subtitle text
LEGAL & MATHEMATICAL PUBLICATIONS

Arbitration Articles

The Authority of a Michigan Sheriff To Deny Law Enforcement Powers to a Deputy, Thomas M. Cooley Law Review, Volume 25, Number 3, 2009, pages 433-462

http://www.scribd.com/doc/16719170/The-Authority-of-a-Michigan-Sheriff-to-Deny-Law-Enforcement-Powers-to-a-Deputy

A follow-up article, POAM v. Leelanau County Sheriff--An Opportunity Missed, is posted at

http://www.scribd.com/doc/29653845/POAM-v-Leelanau-County-Sheriff-An-Opportunity-Missed

See also

http://www.scribd.com/doc/14952250/The-Notice-Provisions-of-the-Alabama-Fair-Dismissal-and-Teacher-Tenure-Acts


And

http://www.scribd.com/doc/67037864/The-Perils-of-Moral-Turpitude-10-1-11

Employee Benefits Publications & Speaking

PBGC Rebutted on Arrears, 42 Labor L J 311 (May 1991).
A Simple Interest Problem-An Update, 16 The Pension Actuary No. 2 (February 1991).

A Simple Interest Problem, 14 The Pension Actuary No. 8 (Special Insert, August 1989).

Spoke on Withdrawal from Multiemployer Plans: Can You Get Out? Should You Get Out? at Eleventh Annual Labor Law Seminar presented by Institute of Continuing Legal Education, April 1986.

Spoke on Pension Issues in Collective Bargaining at Ninth Annual Labor Law Seminar presented by ICLE, April 1984; address appeared in 10 MI Tax L J 13 (October-December 1984). 

Trade Secrets Publications, Citations, Teaching & Speaking


 

Supreme Court, Legislature Say “Yes” to Michigan’s Trade Secrets, “Michigan’s Law of Trade Secrets and Covenants Not to Compete after Hayes-Albion and Repeal of the Non-Compete Statute”. First such analysis ever written on Michigan law. Distributed at Eleventh Annual Intellectual Property Law Workshop, August 1-3, 1985, sponsored by Patent, Trademark & Copyright Section of the State Bar of Michigan, and distributed through the Institute of Continuing Legal Education at the University of Michigan Law School. Revised edition appeared in 64 U Det L Rev 1-127 (1986).

 

Michigan’s Law of Trade Secrets and Covenants Not to Compete:  Chapter Two, 66 U Det L Rev 33-47 (1988).

         

These law review articles are cited in Trade Secrets, A State-by-State Survey (ABA/BNA 3rd ed 2006) 1940, 1950, 1964, 1966; Chem-Trend, Inc v McCarthy, 780 F Supp 458, 461 (ED Mich); Ohio and Michigan Law on Postemployment Covenants Not to Compete, 55 Ohio St LJ 215 (1994), 227 fn 63, 231 fns 75, 80, 81, 232 fn 89;  Covenants Not to Compete, A State-by-State Survey (ABA/BNA 2nd ed 1996) 595, 601.

               

Taught trade secrets and confidential information course through Intellectual Property Law Institute, sponsored by University of Windsor, University of Detroit and WayneStateUniversity, Fall 1988 & Winter 1990. Spoke on The Disparate Treatment of Technical and Business Information under Michigan Trade Secrets Law, at Annual Seminar of the Intellectual Property Law Section of the State Bar of Michigan, March 1990. 


Mathematics Publications,

Citations, Speaking & Teaching

 

1.  Note on Quasi-Decompositions of Irreducible Groups, Proc. Amer. Math. Soc., 26, no.1 (1970), 33-356.  Citations:  (a) Fuchs, L., Abelian Groups, vol. II (Academic Press 1973), @ 329 (b) Benabdallah, K., Groupes Abeliens Sans-Torsion (Univ. of Montreal Press 1981), @ 67 & 68.

2.  A Generalization of Separable Groups, Pacific J. Math., 39, no. 3 (1970), 603-613.  Citations(a) Benabdallah, K., Groupes Abeliens Sans-Torsion (Univ. of Montreal Press 1981), @ 67 & 68 (b) Mishina, A. P., “Abelian groups”, J. Math. Sci. (New York) 18, no. 5 (1982), 629—668, @ 635, 637 & 659 (c) Macias-Diaz, J., A generalization of the Pontryagin-Hill theorems to projective modules over Prufer domains”, Pacific J. Math., 246, no. 2 (2010), 391—405, @ 392 & 404 (d) Macias-Diaz, J. E., On the unions of ascending chains of direct sums of ideals of h-local Prufer domains”, Algebra Colloquium, 18, no. spec01 (2011), 749-757, @ 750 & 757; http://arxiv.org/PS_cache/arxiv/pdf/1112/1112.0600v1.pdf, @ 2 & 9. 

3.  Characterization of a Class of Torsion Free Groups in Terms of Endomorphisms, Pacific J. Math., 79, no. 2 (1978), 341
-355; submission date corrected to February 5, 1974, Pacific J. Math., 85, no. 2 (1979). Citations(a) Benabdallah, K., Groupes Abeliens Sans-Torsion (Univ. of Montreal Press 1981), @ 55, 65, 67 & 68 (b) Markov, T., Mikhalev, V., Skornyakov, L.A., Tuganbaev, A.A., “Endomorphism rings of modules and lattices of submodules”, J. Math. Sci. (N.Y.), 31, no. 3 (1985), 3005—3051, @ 3008 & 3037 (c) Mishina, A.P., Abelian Groups”, J. Math. Sci. (N.Y.), 40, no. 3 (1988), 288-330, @ 297 & 323 (d) Krylov, P.A., Mikhalev, A.V., Tugenbaev, A.A., “Properties of endomorphism rings of abelian groups, I”, J. Math. Sci. (N.Y.) 112, no. 6 (2002), 4598—4735, @ 4721 (e) Krylov, P. A., Mikhalev, A. V., Tuganbaev, A. A., “Properties of endomorphism rings of abelian groups, II”, J. Math. Sci. (New York) 113, no. 1 (2003), 1—174, @ 159 (f) Krylov, P.A., Mikhalev, A.V., Tuganbaev, A.A., Endomorphism Rings of Abelian Groups (Kluwer Academic Publications 2003), @ 418.

4.  A Sufficient Condition for Separability, 67 Journal of Algebra, 67, no. 2 (1980), 476-478.  Citations(a) Metelli, C., "On type-related properties of torsionfree abelian groups" in Abelian Group Theory, Gobel, R., Lady, L., Mader, A., eds., vol. 1006, Lecture Notes in Mathematics, (Springer-Verlag 1983) (b) Fuchs, L., Viljoen, G., “A generalization of separable torsion-free abelian groups”, Rend. Sem. Mat. Univ. Padova 73 (1985), 15-21, @ 15 & 21 (c) Rangaswamy, K.M., “On C-separable Abelian groups”, Commun. Algebra 13, no. 6 (1985), 1219-1227, @ 1219, 1220, 1223 & 1226 (d) Mishina, A.P., Abelian groups, J. Math. Sci. (N.Y.), 40, no. 3 (1988), 288-330, @ 293 & 323 (e) Dugas, M., Oxford, E.P., Preradicals induced by torsion free abelian groups, Commun. Algebra, 17, no. 4 (1989), 981-1002 (f) Van Oystaeyen, F., Separable algebras, in Handbook of Algebra, vol. 2, Hazewinkel, M., ed. (North Holland 2000)  (g) Grinshpon, S. Ya., Krylov, P.A., “Fully invariant subgroups, full transitivity, and homomorphism groups of abelian groups”, J. Math. Sci. (N.Y.) 128, no. 3 (2005),  2894—2997, @ 2960 & 2995.    

5.  Cardinalities of Chains of Sets, Abstracts Amer. Math. Soc., 2 (1981), 486; http://www.scribd.com/doc/76595303/Cardinalities-of-Chains-of-Sets.

6.  Polynomial Points (with P. Schultz), Journal of Integer Sequences. Vol. 10 (2007), Article 07.3.6; http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schultz/schultz14.pdfCitation: (a) N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, sequence A000178/M2049.

7.  Product Bases and Endomorphisms of Products of Integers, http://www.scribd.com/doc/21299110/Product-Bases-and-Endomorphisms-of-Products-of-Integers

8.  Sequences Generated by Polynomials (with P. Schultz), Amer. Math. Monthly, 115, no. 2 (2008), 154-158.  Citations: (a) N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, sequences A135185, A135256A135049.

9.  Multinomial Points (with P. Schultz), Houston J. Math., 34, no. 3 (2008), 661-676.

10.  Root Bases of Polynomials Over Integral Domains (with P. Schultz), in Models,  Modules and Abelian Groups, R. Gobel & B. Goldsmith, eds. (Walter de Gruyter Berlin 2008), 237-250. Citation: (a) Schultz, P., “Bases for direct products”, in Algebra, Representations and Applications, Futorny, V., Kac, V., Kashuba, I. and Zelmanov, E., eds., Contemporary Mathematics, Amer. Math. Soc., 483 (2009), 253-259, @ 254, 257 & 258.

11.  Identities for Complete Homogeneous Symmetric Polynomials, JP J. Algebra, Number Theory & Applications, 21, no. 1 (2011), 109-116; http://pphmj.com/journals/jpanta.htm; http://www.scribd.com/doc/16010484/Identities-for-Complete-Homogeneous-Symmetric-Polynomials. Citations: (a) Stawiska, M., Liouville theorem with parameters; asymptotics of certain rational integrals in differential fields, Annales Societatis Mathematicae Polonae, Series I, Commentationes Mathematicae, 50, no. 2 (2010), 155-159, @ 157 & 159; http://arxiv.com/abs/1004.5536 @ 3 & 4; (b) ; (b) Toth, Laszlo, Two generalizations of the Busche-Ramanujan identities, Int'l J. Number Theory, 9, no. 5 (2013), 1301-1311, @ 1304 & 1310; http://arxiv.org/pdf/1301.3331v2.pdf, @ 3 & 9; http://arxiv.org/pdf/1301.3331v1.pdf, @ 6 & 8.

12.  Endomorphisms and Product bases of the Baer-Specker Group, Int'l J. Math. and Math. Sciences, 2009, article ID 396475, 9 pages;
http://www.hindawi.com/journals/ijmms/2009/396475/;

http://www.scribd.com/doc/20021257/Endomorphisms-and-Product-Bases-of-the-Baer-Specker-Group.

13.  Properties of Slender Rings, Int'l J. Math. and Math. Sciences, 2010, article ID 162464, 10 pages; http://www.hindawi.com/journals/ijmms/2010/162464.html; http://www.scribd.com/doc/37419408/Properties-of-Slender-Rings.

14.  Generic Combinatorial Identities, JP J. Algebra, Number Theory &
Applications, 31, no. 1 (2013), 1-4;
http://www.pphmj.com/abstract/8069.htm;
http://www.scribd.com/doc/133220929/Generic-Combinatorial-Identities-1-18-14.


Lectured on research results before the Seminaire de Mathematiques Superieures at the University
of Montreal (1979), before the 789th Meeting of the American Mathematical Society at the University of Massachusetts in Amherst(1981), before the 1st Joint Meeting of the American Mathematical Society and the New Zealand Mathematical Society (2007), and at departmental colloquia.

Adjunct professor of mathematics at the University of Detroit Mercy. Previously taught mathematics and computer programming at University of Washington and Wayne State University.